Evolutionary Multi/Many-Objective Approaches for Next Release Optimization Problem

Supervisor: Prof. Rammohan Mallipeddi

Presented by:
Fitria Wulandari
November 15 ${ }^{\text {th }}, 2019$

Kyungpook National University

Introduction

\square We have developed a novel Evolutionary algorithms to deal with Many-objective problem
\square We have also developed a novel mutation strategies for Next Release problem

Hierarchical Approaches for Many-objective-optimization

knu

01 Introduction

02 Scientific Background of Multi-objective

CONTENTS

03 Proposed Method

04 Experimental Setup \& Results

05 Discussion

knu

01 Introduction

02 Scientific Background of Multi-objective

03 Proposed Meihod

04 Experimental Setup \& Results

05 Discussion

Introduction

\square Pareto-dominance multi-objective evolutionary algorithms (PDMOEAs) are extensively employed in the literature to handle multi-objective problems (MOPs) effectively.
\square However, the performance of PDMOEAs drastically reduces for the problems with higher objectives termed as the many-objective problems (MaOPs) due to the inefficiency of the Pareto-dominance to segregate the solutions.
\square Hence, in this work, we propose a hierarchical approach for the PDMOEAs to solve the MaOPs.
\square The proposed approach employs Pareto-dominance along with approximate nondominated sorting and Shift-based density estimation in the mating and environmental selections to select and preserve better solutions respectively.

knu

01 Introduction

02 Scientific Background of Multi-objective

03 Proposed Method

04 Experimental Setup \& Results

05 Discussion

Basic of Multi/Many-objective

Single-objective
Optimization Problems

Minimize $f(x)$
subject to $x \in \Omega$

Multi-objective Optimization Problems

$$
\operatorname{Minimize} F(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)
$$

$$
\text { subject to } x \in \Omega
$$

General Framework of Evolutionary Algorithm

Approaches to Solve Multi-Objective Optimization

Pareto-Dominance based Approach

Indicator-based
Approach

Decomposition-based
Approach

Approaches to Solve Multi-Objective Optimization

```
Pareto-Dominance
    based Approach
```

Indicator-based
Approach

Decomposition-based
Approach

- Pareto dominance based approach means the qualities of the candidate solutions are compared using Pareto Rank (Nondominated sorting).
\square Nondominated sorting is a procedure where solutions in the population are assigned to different fronts based on their dominance relationships

Minimization

Case I:
A dominates B

Solutions	Obj1	Obj2	Obj3	Obj4
A	0.6	0.5	0.7	0.3

В	0.7	0.75	0.85	0.55

Case II:
A and B are
nondominated

Solutions	Obj1	Obj2	Obj3	Obj4
A	0.6	0.5	0.7	0.3

B	0.5	0.75	0.65	0.55

Approaches to Solve Multi-Objective Optimization

Pareto-Dominance based Approach

Indicator-based
Approach

Decomposition-based
Approach

Concept Behind Pareto-Dominance

- Rank=1 (Nondominated Solutions)
- Rank=2
- Rank $=3$

Issues in Multi-objective Optimization

- How to maintain a diverse

Pareto set approximation?
(2) density estimation

- How to prevent nondominated solutions from being lost?
(3) environmental selection
- How to guide the population towards the Pareto set?
(1) fitness assignment

Many-objective optimization \& Its problems

- Multi-objective problems (MOPs) with the number of objectives more than three, are often known as Many-objective optimization problems (MaOPs).
\square As the number of objectives increases, the effect of Pareto-Dominance vanishes gradually, which in turn effects the diversity and convergence..
\square To achieve the better convergence and diversity, there is necessity to adopt an additional secondary selection criterion.

Knu

01 Introduction

02 Scientific Background of Multi-objective

03 Proposed Method

04 Experimental Setup \& Results

05 Discussion

Proposed Method

\square We utilize the advantages provided by the AENS approach and shift-based density estimation to improve the performance of PDMOEAs in handling the MaOPs.

The proposed approach aims at balancing both the convergence and diversity.
\square We propose a hierarchical approach for the PDMOEAs to solve the MaOPs.
\square The proposed approach employs Pareto-dominance along with approximate nondominated sorting and Shift-based density estimation in the mating and environmental selections to select and preserve better solutions respectively.

General Framework of the Proposed Method
\square In the proposed hierarchical approach, at first, parent population P_{1} of size N is random initialized and evaluated.
\square After Initialization, mating section procedure is adopted to generate offspring and the parents are selected based on the sorted order of the Pareto-dominance, AENS and shift-based density estimation.
\square After the mating selection, the obtained offspring population is combined with the parent population and the Pareto-dominance, AENS approach and shift-based density procedures are employed.
\square Then environmental selection procedure is adopted to preserve the elite solutions for the next generations.

Mating Selection

Sort the solutions based on Pareto Dominance and AENS in ascending order and shift-based density in descending order

Assign each solution with a rank based on the sorted order

Select two solutions randomly and choose one solution among them with 1 m rank for generating offspring
\square After the Pareto-dominance, for solutions in each nondominated fronts, AENS approach is adopted. In other words, each solution will be assigned with Pareto rank based on Pareto-dominance and subPareto rank based on AENS approach.
\square For each solution, shift-based density estimation is obtained with the help of the Paretodominance. Each solution is sorted based on Par eto rank and sub-Pareto rank in ascending order and shift-based density estimation in descending order. Then for each solution a rank is assigned based on the sorted order.
\square After obtaining the rank, randomly two individu als are selected. Both the solutions will be comp ared based on the rank and the solution with less rank is selected for the offspring generation. If b oth the solutions A and B have rank, then one so lution is chosen is random.

Environmental Selection

\square In the environmental selection, Pareto-dominance procedure is adopted on the combined parent and offspring population. Then similar to the mating selection, sub-Pareto rank and shift-based density for each solution are obtained.
\square As mentioned in the mating selection, the solutions are sorted based on the Pareto rank and sub-Pareto rank in ascending order and shiftbased density estimation in descending order and the best N solutions are chosen in the sorted order

knu

01 Introduction

02 Scientific Background of Multi-objective

03 Proposed Method

04 Experimental Setup \& Results

05 Discussion

Experimental Setup

\square We have conducted experiments on two popular benchmark test suites DTLZ and WFG
\square The DTLZ test suite consists of seven problems DTLZ1 to DTLZ7 and WFG test suite contains of nine problems WFG1 to WFG9
\square To demonstrate the effectiveness of the proposed hierarchical approach, we have compared our method with state-of-art algorithms such as NSGA-II, SPEA2, KnEA, and NSGA-III.
\square To compare the performance of the proposed approach with the state-of-art algorithms, we have employed the hypervolume (HV) indicator. The hypervolume indicator considers both convergence and diversity.
\square The algorithm with higher value of hypervolume is considered as best performing algorithm

Results

Table1: Mean and Standard Deviation of Hypervolume results for DTLZ problems

Problem	M	NSGA-II			SPEA2			KnEA			NSGAIII			Hierarchical	
DTLZ1	4	0.7913	0.2412	(+)	0.9103	0.0010	(-)	0.6415	0.1294	(+)	0.9120	0.0005	(-)	0.8589	0.0214
	6	0.1346	0.2611	(+)	0.8193	0.2822	(+)	0.5194	0.1018	(+)	0.9783	0.0060	$(-)$	0.9108	0.0404
	8	0.0177	0.0968	(+)	0	0	(+)	0.3265	0.1058	(+)	0.9729	0.1049	(-)	0.8772	0.1075
	10	0	0	(+)	0	0	(+)	0.6841	0.2941	(+)	0.9566	0.1610	(+)	0.9640	0.0594
DTLZ2	4	0.4956	0.0091	(+)	0.5702	0.0048	(-)	0.5738	0.0043	(-)	0.6012	0.0009	(-)	0.5119	0.0170
	6	0.4502	0.1828	(+)	0.7749	0.1213	(+)	0.9861	0.0005	(-)	0.9874	0.0028	(-)	0.9617	0.0142
	8	0.6287	0.0687	(+)	0.6445	0.0218	(+)	0.9999	0.0000	(=)	0.9998	0.0003	(=)	0.9986	0.0013
	10	0.8819	0.0267	(+)	0.9122	0.0039	(+)	1.0000	0.0000	($=$	1.0000	0.0000	(=)	1.0000	0.0000
DTLZ3	4	0.5173	0.0117	(-)	0.5944	0.0037	(-)	0.4323	0.0784	(+)	0.6048	0.0031	(-)	0.4870	0.0241
	6	0.8714	0.1256	(+)	0.7589	0.2487	(+)	0.9970	0.0021	(+)	0.9998	0.0008	(+)	0.9998	0.0004
	8	0.5564	0.1259	(+)	0.0344	0.0774	(+)	0.8970	0.2723	(+)	1.0000	0	(=)	1.0000	0
	10	0.4770	0.1052	(+)	0.2391	0.0707	(+)	1.0000	0.0000	(=)	1.0000	0	(=)	1.0000	0
DTLZ4	4	0.5217	0.0091	(=)	0.5497	0.0494	(-)	0.5940	0.0052	(-)	0.4995	0.1110	(+)	0.5009	0.1058
	6	0.7608	0.1209	(+)	0.9171	0.0519	(+)	0.9980	0.0001	(=)	0.9920	0.0062	(=)	0.9909	0.0088
	8	0.8969	0.0361	(+)	0.8763	0.0149	(+)	1.0000	0.0000	(-)	0.9999	0.0001	(=)	0.9999	0.0001
	10	0.9524	0.0135	(+)	0.9296	0.0065	(+)	1.0000	0.0000	(=)	1.0000	0.0000	(=)	1.0000	0.0000
DTLZ5	4	0.7797	0.0010	(-)	0.7641	0.0082	(-)	0.7676	0.0051	$(-)$	0.7721	0.0021	(-)	0.6402	0.1523
	6	0.8370	0.0068	$(-)$	0.6706	0.1093	(+)	0.8656	0.0040	(-)	0.8365	0.0068	$(-)$	0.7210	0.1273
	8	0.8209	0.0141	(-)	0.4208	0.1636	(+)	0.8751	0.0039	(-)	0.8512	0.0080	$(-)$	0.7320	0.0970
	10	0.8335	0.0166	$(-)$	0.4491	0.1325	(+)	0.8795	0.0031	(-)	0.8786	0.0061	$(-)$	0.7442	0.1092
DTLZ6	4	0.8993	0.0501	(-)	0.9139	0.0244	(-)	0.9281	0.0081	(-)	0.9349	0.0008	$(-)$	0.7890	0.2109
	6	0.5453	0.0484	(+)	0.2882	0.0467	(+)	0.9864	0.0030	(-)	0.9853	0.0030	(-)	0.8901	0.0585
	8	0.5262	0.0465	(+)	0.4263	0.0219	(+)	0.9885	0.0023	(-)	0.9877	0.0039	(-)	0.9298	0.0520
	10	0.5880	0.0467	(+)	0.4732	0.0243	(+)	0.9898	0.0012	(-)	0.9876	0.0031	$(-)$	0.9144	0.0515
DTLZ7	4	0.1581	0.0060	(+)	0.1844	0.0059	(-)	0.1924	0.0094	(-)	0.1885	0.0023	$(-)$	0.1660	0.0072
	6	0.0397	0.0121	(+)	0.1153	0.0113	(+)	0.1745	0.0109	(-)	0.1424	0.0083	(=)	0.1347	0.0123
	8	0.0563	0.0170	(+)	0.2345	0.1474	(+)	0.5154	0.0262	(+)	0.3428	0.1175	(+)	0.5536	0.0053
	10	0.1238	0.0280	(+)	0.3328	0.2144	(+)	0.3373	0.2226	(+)	0.6307	0.1579	(+)	0.8309	0.0141
+/=/-		21/1/6			21/0/7			9/5/14			5/9/14				

Results

Table 2: Mean and Standard Deviation of Hypervolume results for WFG problems

Knu

01 Introduction

02 Scientific Background of Multi-objective

03 Proposed Method

04 Experimental Results

05 Discussion

Discussion

\square We have conducted Wilcoxon's rank-sum test to obtain the statistical significance and presented the mean and standard deviation results of Hypervolume results in the tables 1 and tables 2.
\square The algorithm with best results are presented in the bold and shaded with grey color.
\square From the hypervolume results presented in the tables 1 and 2, we can observe that the proposed method outperforms the NSGA-II algorithm and performs competitively when compared with the SPEA2, KnEA, and NSGA-III

	NSGA-II	SPEA2	KnEA	NSGA-III	Hierarchical
$+/=/-$	$36 / 6 / 22$	$29 / 2 / 33$	$30 / 12 / 22$	$21 / 15 / 28$	

Multi/Many-objective Approaches for Next Release Problem

knu

CONTENTS

01 Introduction

02 Research Problem

03 Proposed

05 Results

06 Conclusion

Knu

CONTENTS

01 Introduction

02 Research Problem

03 Proposed

05 Results

06 Conclusion

Introduction

One common problem that the companies face is to decide what requirements should be implemented in the next release of the software. Some reasons that a company needs to find the ideal set of requirements:

1. Different levels of importance for software requirements
2. Some software requirements that are customer requests
3. The different requirement of times, costs, and efforts to be met

Introduction

Next Release Problem?

The aim of the next release problem (NRP) is to find the most suitable set of tasks to include in the next release for a software product, to minimize the cost and to maximize the customer satisfaction based on optimization objectives
\square Single objective
Multi-objective

Knu

01 Introduction

02 Research Problem

03 Proposed

05 Results

06 Conclusion

Why Optimization in NRP?

- The aim of a development study is to analyze how to evaluate the minimum requirements for the fair selection of demands for five objectives of the multi/many-objective including the maximum profit of the customers.
- All current multi-objective NRP are aimed at two aims, namely profits cost, or profits and fairness.
- The pareto frontier is a general method of resolving the multi-objective NRP, which means the collection of optimal solutions currently offered. Users select requirements for balancing two overlapping objectives for their next release, based on such a muti-objective NRP.
- However, an organization must at the same time deal with three or more deadlines to assess the scope of the specifications.

Problem Statement

1. The number of clients is indicated by:

$$
U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}
$$

2. The set of all the requirements to be taken into account is shown by:

$$
R=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}
$$

3. A certain amount of resources i.e. the cost of production, must be allocated for the i mplementation of every need. The following is a value vector:

$$
C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}
$$

Objective Formulation

1	The minimum of requirement costs	minimize $f_{1}(X)=\sum_{r_{j} \in R(X)} c_{j}$
2	The maximum of costumer profits	minimize $f_{1}(X)=\sum_{r_{j} \in R(X)} c_{j}$
3	The coverage of requirements for customers	minimize $f_{3}(X)=\sigma\left(\left\|R\left(s_{i}\right)\right\|\right)$
4	The fairness of customers	minimize $f_{4}(X)=\sigma\left(\frac{\left\|R\left(s_{i}\right)\right\|}{\left\|A\left(s_{i}\right)\right\|}\right)$
5	The fairness of resource allocation	minimize $f_{5}(X)=\sigma\left(\sum_{r_{j} \in R\left(s_{i}\right)} c_{j}\right)$

Evolutionary Approaches

[1] Y. Zhang, M. Harman, and S. A. Mansouri, "The multi-objective next release problem," in Proceedings of the 9th annual conference on Genetic and evolutionary computation, 2007, pp. 1129-1137.
[2] J. J. Durillo, Y. Zhang, E. Alba, and A. J. Nebro, "A study of the multi-objective next release problem," in 2009 1st International Symposium on Search Based Software Engineering, 2009, pp. 49-58.
[3] J. J. Durillo, Y. Zhang, E. Alba, M. Harman, and A. J. Nebro, "A study of the bi-objective next release problem," Empirical Software Engineering, vol. 16, pp. 29-60, 2011.
[4] X. Cai, O. Wei, and Z. Huang, "Evolutionary approaches for multi-objective next release problem," Computing and Informatics, vol. 31, pp. 847--875, 2012.
[5] J. M. Chaves-González and M. A. Pérez-Toledano, "Differential evolution with Pareto tournament for the multi-objective next release problem," Applied Mathematics and Computation, vol. 252, pp. 1-13, 2015.
[6] J. Geng, S. Ying, X. Jia, T. Zhang, X. Liu, L. Guo, et al., "Supporting Many-Objective Software Require ments Decision: An Exploratory Study on the Next Release Problem," IEEE Access, vol. 6, pp. 60547-60 558, 2018.

General Framework of Evolutionary Algorithm

Crossover

Crossover is a system in which more than one (usually two) parent solutions are taken from and children are created.
The image below is showing a template in which two parents are separated from the third bit and two children are engendered. Crossover methods can be more complex than they can, by splitting the parents into more than two parts and providing a cap of bits, but the principle remains the same.

Mutation

Each genetic algorithm has a mutation operator to increase its diversity with in the population. As Figure below shows, there are different mechanisms for a mutation: the alteration, the exchange, the insertion and removal. The likelihood of mutation needs to be selected well in order to progress slowly. $0.001,0.01$ or $\frac{1}{\text { length }}$ should be used in publications.

Deletion

knu

01 Introduction

02 Research Problem

03 Proposed

05 Results

06 Conclusion

Existing crossover Operators

\square Single Point Crossover

\square Two Point Crossover

Parent

Existing crossover Operators
\square Multi-parent Crossover

\square Binomial Crossover

$$
z_{i, j}^{\prime}= \begin{cases}y_{i, j}^{\prime}, & \text { if }\left(\operatorname{rand}(0,1) \leq C R \mid j=j_{r}\right) \\ x_{i, j}^{\prime}, & \text { otherwise }\end{cases}
$$

Existing Mutation Operation

- Bit-wise Mutation

Bit-wise mutation is operator which attempted to mutate every bit (alter the bit to its complement) with a probability p_{m} independently to the outcome of mutation to other bits.

Proposed Mutation Operation

- Radius Random Mutation

0	1	0	1

1	0	0	1
1 0 1 0			

1	1	0	0

| 0.75 | 0.5 | 0.25 | 0.5 |
| :--- | :--- | :--- | :--- |\quad| 0.3 | 0.5 | 0.28 | 0.9 |
| :--- | :--- | :--- | :--- |

Experimental Analysis

\square This work have executed 30 runs with 250 generations for each run, every algorithm and every instance of problem.

- Because we deal with stochastic algorithms, a statistical analysis of the results obtained needs to be carried out in order to compare them with some confidence.

NRP Dataset

Instance	e1	e2	e3	e4	g1	g2	g3	g4
Requirements	3502	4254	2844	3186	2690	2650	2512	2246
Customers	536	491	456	399	445	315	423	294
Requirement cost	$1-7$	$1-7$	$1-7$	$1-7$	$1-7$	$1-7$	$1-7$	$1-7$
Customer profit	$10-50$	$10-50$	$10-50$	$10-50$	$10-50$	$10-50$	$10-50$	$10-50$
Requests by Reques customer	$4-20$	$5-30$	$4-15$	$5-20$	$4-20$	$5-30$	$4-15$	$5-20$

Knu

CONTENTS

01 Introduction

02 Research Problem

03 Proposed

05 Results

06 Conclusion

Hypervolume Results

Problems	NSGAII-SPCBMW		NSGAII-SPCradiusmut		NSGAIITPCradiusmut		NSGAIIBNCradiusmut		NSGAII- MrPCradiusmut	
No.of objectives = 2										
NRP-e1	0.2103	0.0141	0.2998	0.0422	0.3001	0.0511	0.2801	0.0499	0.3111	0.0371
NRP-e2	0.1674	0.0104	0.2713	0.0403	0.2873	0.0420	0.2561	0.0584	0.2992	0.0479
NRP-e3	0.2169	0.0141	0.2886	0.0435	0.2908	0.0484	0.2722	0.0416	0.3054	0.0374
NRP-e4	0.2034	0.0133	0.2831	0.0500	0.2636	0.0409	0.2774	0.0431	0.3135	0.0453
NRP-g1	0.2263	0.0157	0.2884	0.0388	0.2981	0.0402	0.2639	0.0448	0.3036	0.0412
NRP-g2	0.2392	0.0155	0.2954	0.0348	0.3074	0.0436	0.2891	0.0434	0.3097	0.0352
NRP-g3	0.2299	0.0150	0.2887	0.0484	0.2762	0.0470	0.2639	0.0443	0.2923	0.0333
NRP-g4	0.2461	0.0116	0.2740	0.0410	0.2838	0.0577	0.2758	0.0536	0.2966	0.0376

Hypervolume Results

Problems	ISDE+-SPCBMW		ISDE+-SPCradiusmut		ISDE+-TPC	adiusmut	ISDE+-BNCradiusmut		ISDE+- MrPCradiusmut	
No.of objectives = 2										
NRP-e1	0.2016	0.0110	0.5126	0.0166	0.5136	0.0165	0.4690	0.0171	0.5163	0.0177
NRP-e2	0.1708	0.0103	0.5138	0.0147	0.5064	0.0151	0.4704	0.0234	0.5086	0.0154
NRP-e3	0.2070	0.0131	0.5122	0.0168	0.5091	0.0197	0.4615	0.0167	0.5088	0.0150
NRP-e4	0.2133	0.0131	0.5166	0.0169	0.5150	0.0158	0.4766	0.0131	0.5089	0.0167
NRP-g1	0.2052	0.0157	0.5096	0.0163	0.5090	0.0162	0.4713	0.0203	0.5067	0.0194
NRP-g2	0.2245	0.0163	0.5171	0.0133	0.5136	0.0137	0.4751	0.0235	0.5108	0.0187
NRP-g3	0.2133	0.0130	0.5128	0.0146	0.5103	0.0165	0.4694	0.0211	0.5108	0.0173
NRP-g4	0.2149	0.0175	0.5101	0.0147	0.5076	0.0165	0.4659	0.0187	0.5016	0.0170

Hypervolume Results

	NSGAII-SPCBMW		NSGAIISPCradiusmut		NSGAIITPCradiusmut		NSGAII- BNCradiusmut		NSGAII- MrPCradiusmut	
No. of Objectives = 5										
NRP-e1	0.0618	0.0082	0.0758	0.0134	0.0704	0.0137	0.0660	0.0110	0.0750	0.0121
NRP-e2	0.0710	0.0078	0.0832	0.0071	0.0820	0.0060	0.0694	0.0140	0.0854	0.0059
NRP-e3	0.0598	0.0049	0.0680	0.0114	0.0782	0.0079	0.0672	0.0049	0.0700	0.0154
NRP-e4	0.0652	0.0093	0.0748	0.0092	0.0764	0.0062	0.0786	0.0205	0.0726	0.0094
NRP-g1	0.0620	0.0141	0.0734	0.0101	0.0690	0.0053	0.0594	0.0124	0.0696	0.0079
NRP-g2	0.0778	0.0105	0.0816	0.0092	0.0836	0.0061	0.0752	0.0142	0.0866	0.0083
NRP-g3	0.0624	0.0091	0.0784	0.0075	0.0622	0.0062	0.0684	0.0061	0.0718	0.0068
NRP-g4	0.0712	0.0033	0.0756	0.0135	0.0828	0.0197	0.0704	0.0130	0.0764	0.0099

Knu

CONTENTS

01 Introduction

02 Research Problem

03 Proposed

05 Results

06 Conclusion

In this study researchers and practitioners in the area of code and search techniques can provide valuable feedback. Certain problem formulations that take account of different sets of goals and specifications, and the development of techniques that enable software engineers to take decisions, are also important to study.

In addition, this could lead to the need to find more efficient solutions. It is also interesting to examine the scope of such strategies, when demand and/or consumer numbers increase. A method that allows the systemic development of instances with desired functions will be required to reach this goal; we intend to develop a problem generator for MONRP instances in this regard.

Thank You

Approximate non-dominated sorting (A-ENS)

Shift Density Estimation

Fig. 2. An illustration of shift-based density estimation in a bi-objective minimization scenario. To estimate the density of individual \mathbf{A}, individuals \mathbf{B}, \mathbf{C}, and \mathbf{D} are shifted to $\mathbf{B}^{\prime}, \mathbf{C}^{\prime}$, and \mathbf{D}^{\prime}, respectively.

